DOI:10.19344/j.cnki.issn1671-5276.2019.05.035

气动人工肌肉驱动的柔性仿生肩关节 结构设计与优化

李芳^a,吴阳^b,刘凯^b

(南京航空航天大学 a. 金城学院; b. 机电学院,江苏 南京 210016)

摘 要:根据人体肩关节的特点设计了一种气动人工肌肉驱动的柔性仿生肩关节,推导了该仿 生关节的逆运动学模型;以仿生关节最小输出转矩、气动人工肌肉输出力模型以及最大收缩率 作为约束条件,以仿生关节运动范围最大为目标函数,利用遗传算法对该仿生关节的多个结构 参数进行优化设计。优化结果表明,优化后的关节运动范围明显增大,有效提高了该仿生关节 的灵活性。

关键词:气动人工肌肉(PAM);结构优化; 肩关节 中图分类号:TH113 文献标志码:A 文章编号:1671-5276(2019)05-0140-03

Design and Optimization of Flexible Bionic Shoulder Joint Driven by Pneumatic Artificial Muscle

LI Fang^a, WU Yang^b, LIU Kai^b

(a. Jincheng College; b. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: According to the characteristics of human shoulder joint, a kind of flexible bionic shoulder joint is designed, and the inverse kinematic model of the bionic joint is derived. With the minimum output torque, the output force model and the maximum contraction ratio of the pneumatic artificial muscle as the constraint conditions and the maximum range of the bionic joint motion as the objective function, the genetic algorithm is used to optimize the structure parameters of the bionic joint. Experiment results show that the range of the joint motion after the optimization is obviously increased and its flexibility is improved greatly.

Keywords: pneumatic artificial muscle (PAM); structure optimization; shoulder joint

0 引言

作为仿生机器人的一类,人形机器人的研究最为活 跃,由其衍生而来的仿生关节的研究,更受国内外学者的 青睐。侯雨雷^[1]等人基于 3-RRR 3 自由度球面并联机 构,提出了两种改进的可应用于人形机器人肩关节、髋关 节的过约束四支链仿生关节机构。应申舜^[2]等人提出了 一种基于人工肌肉的新型驱动关节设计方法,并将其应用 于四足机器人髋关节的设计中。

作为一种新型驱动器,气动人工肌肉(PAM)具有高 功率/体积比和较好的柔顺性,越来越多地被用作仿生关 节的驱动器。与串联机构相比,并联机构具有刚度大、结 构稳定、承载能力强、累积误差小、运动惯性小、运动学反 解易求和便于实时控制等优点^[3]。因此,本文提出了一 种气动人工肌肉驱动的柔性仿生肩关节。关节的工作空 间是评价其性能的重要指标,本文采用遗传算法对该仿生 肩关节进行结构优化,以增大其工作空间。遗传算法 (GA)是一种基于自然界生物进化理论的优化、搜索和学 习技术,其仿造生物界和自然界的自然选择与遗传机理, 通过竞争使种群进化,一代代改变一个变量群体的质量, 从而追求问题解的总体合理性。基于遗传算法的工作空 间优化问题,逐渐成为各类机器人优化的重要一环。吴生 富^[4]等人对 6-SPS 并联机器人的工作空间进行了研究, 并对工作空间各截面进行了分析,讨论了扩大工作空间的 几种途径。陈在礼^[5]等人利用遗传算法优化 6 自由度空 间并联机器人的机构参数,满足给定工作空间,使结构变 得紧凑。

1 肩关节的机构构型与运动学分析

1.1 构型分析

人体肩关节由肱骨头与肩胛骨的关节盂构成,是典型的球窝关节。作为典型的少自由度并联机构之一,3自由 度并联机构的结构、运动状态和特性与人体的肩关节非常 相似,非常适合人形机器人的肩关节原型机构^[6]。

3自由度转动并联机构主要由末端执行器、大运动平

基金项目:国家自然科学基金资助项目(51405229);江苏省自然科学基金资助项目(BK20151470) 作者简介:李芳(1979—),女,江苏淮安人,副教授,硕士,主要研究方向为仿生机器人、机电一体化。 通信作者:吴阳(1994—),男,江苏泰州人,硕士,主要研究方向为仿生机器人控制。

台、小运动平台、气动人工肌肉、固定杆和固定平台等组 成。其中,大运动平台和小运动平台分别由伸缩长度为 100 mm 和 48 mm 两组气动人工肌肉作为伸缩移动副来驱 动。图1为仿生肩关节机构简图,固定平台与大平台通过 3根气动人工肌肉 PMAi(1-3) 及球面副(0,) 连接,3根气 动人工肌肉两端的球面副均匀分布在固定平台 Ai(1-3) 和大运动平台 Bi(1-3)上, A_i 位于半径为 R_i 的圆上, B_i 位 于半径为 R_g的圆上,在固定平台上建立固定坐标系 $O_1x_1y_1z_1$,原点位于固定平台的中心 O_1, O_1x_1 轴指向 A_1 ,在 小运动平台球面副上建立它的坐标系 O,x,y,z,,原点位于 球面副 O_2 的中心, $O_2 x_2 = O_4 b_1$ 平行, O_4 位于大运动平台的 中心。小运动平台与大运动平台的相互转动是通过 PMA4 和 PMA5 驱动,这两根气动人工肌肉两端的球面副 对称分布在两平台上, B_4 、 B_5 通过半径 R_B , C_1 、 C_2 通过的半 径 R_c , O_1O_2 距离为L, O_2O_4 距离为l, O_2O_3 距离为b。其中 小运动平台与末端执行器垂直固接于杆 0204上,0102杆 垂直固接于固定平台。

图1 3自由度转动并联机构简图

1.2 运动学分析

求此并联机构的运动学逆解,即为已知运动平台的转 动角度,求解各气动人工肌肉的长度。

固定坐标系 $O_1 x_1 y_1 z_1 中, A_1, A_2, A_3$ 在的齐次坐标分别 表示为 $P_{Ai}(i=1,2,3)$ 。小运动平台坐标系 $O_2 x_2 y_2 z_2 中$, B_1, B_2, B_3 在的齐次坐标为 $P_{Bi}(i=1,2,3)$ 。取 z-y-x 型欧 拉角(α, β, γ)表示小运动平台姿态相对于自身的转动,首 先小运动平台坐标系 $O_2 x_2 y_2 z_2$ 绕绕 $O_2 z_2$ 转动 α ,然后绕 O_2 $y_2转动 \beta, 最后 <math>O_2 x_2$ 转动 $\gamma, M, O_2 x_2 y_2 z_2$ 到固定坐标系 $O_1 x_1$ $y_1 z_1$ 变换矩阵可表示为:

$$T = \begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\gamma & 0\\ c\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma & 0\\ -s\beta & c\beta s\gamma & c\beta \gamma & L\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

由于限制大运动平台绕 *O*₁*z*₁的旋转,α=0带入式中得:

$${}^{1}_{2}T = \begin{bmatrix} c\beta & s\beta s\gamma & s\beta c\gamma & 0\\ 0 & c\gamma & -s\gamma & 0\\ -s\beta & c\beta s\gamma & c\beta c\gamma & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2)

3 根气动人工肌肉 *PMA*1、*PMA*2、*PMA*3 向量可以表示为:*L*_{PMAi} = ¹₂ *TP*_{Bi}-*P*_{Ai} (*i*=0,1,2,3)

气动人工肌肉 *PMA*1、*PMA*2、*PMA*3 长度 *L*₁, *L*₂, *L*₃可 以表示为:

$$L_{i} = \left| \frac{1}{2} T P_{Bi} - P_{Ai} \right| \quad (i = 0, 1, 2, 3)$$
(3)

设 B_4 、 B_5 所在平面到 O_2 的距离为 l,则 B_4 , B_5 在小平 台运动坐标系 $O_2 x_2 y_2 z_2$ 中的坐标为: $P_{B4} = (0 - R_B l 1)^T$, $P_{B5} = (0 R_B l 1)^T$

设 θ 为 O_2c_1 和 O_2y_2 所夹锐角, *m* 为 C_1 、 C_2 所在平面与 O_2 的距离, C_1 、 C_2 在小运动平台坐标系 $O_2x_2y_2z_2$ 中的坐标 为: $P_{c_1} = (R_cs\theta R_cc\theta m 1)^T$, $P_{c_2} = (-R_cs\theta - R_cc\theta m 1)^T$ 。 其中: θ_0 为 O_2C_1 和 O_2y_2 所夹初始角度, $\theta = \theta_0$ 和 α 之间满 足如下关系: $\theta = \theta_0 - \alpha_\circ$

所以,气动人工肌肉 PMA4 和 PMA5 的长度可以表示为: $l_i = | \mathbf{P}_{Bi} - \mathbf{P}_{Ci} |$ (*i*=1,2) (4)

1.3 力矩分析

可以求得控制大平台运动的3根气动人工肌肉的单 位向量分别为:

$$l_{PMAi} = \frac{L_{PMAi}}{|L_{PMAi}|} \quad (i = 1, 2, 3)$$
(5)

根据3根气动人工肌肉的收缩力模型,可知各气动人 工肌肉的收缩力向量为:

 $F_{PMAi} = f_{PMAi} I_{PMAi}$ (*i*=1,2,3) (6) 其中: f_{PMAi} (*i*=1,2,3)分别表示气动人工肌肉的收缩力大 小, F_{PMAi} 分别表示 3 根气动人工肌肉收缩力在固定坐标系 中的向量。

将向量 **0**₂**B**₁、**0**₂**B**₂、**0**₃**B**₃计为 **L**₀₂^B₁、**L**₀₂^B₂、**L**₀₃^B₃,可 以通过坐标变换求得:

$$\boldsymbol{L}_{\boldsymbol{o}_{2}B_{i}} = \frac{1}{2} \boldsymbol{T} \boldsymbol{P}_{\boldsymbol{B}_{i}} - \boldsymbol{P}_{\boldsymbol{o}_{2}}(i=1,2,3)$$
(7)

其中: P_{o_2} 为 O_2 在固定坐标系 $O_1 x_1 y_1 z_1 坐标, P_{O_2} =$ (0 0 L)^{*T*}。由式(6)和式(7)可求得3根气动人工肌肉 绕 O_2 点产生的力矩:

$$T_{PMAi} = F_{PMAi} \times L_{0_2 B_i}$$

$$\ddagger \mathbf{\hat{F}}_{PMA1} = (F_{1x} - F_{1y} - F_{1z})^T$$

$$L_{0_2 B_1} = (L_{1x} - L_{1y} - L_{1z})^T$$

$$(8)$$

则
$$T_{PMA1}$$
可以表示为:
 $T_{PMA1} = \{(T_{PMA1})_{x} (T_{PMA1})_{y} (T_{PMA1})_{z}\}^{T} = \{ \left(\left| F_{1y} - F_{1z} \right| \right| \left| F_{1x} - F_{1z} \right| \left| F_{1x} - F_{1y} \right| \right\}^{T} = \left\{ \left| \left| F_{1y} - F_{1z} \right| \right| \left| F_{1z} - F_{1z} \right| \left| F_{1z} - F_{1z} \right| \left| F_{1z} - F_{1z} \right| \right\}^{T} = \left(F_{1y}L_{1z} - F_{1z}L_{1y} - F_{1z}L_{1z} - F_{1z}L_{1z} - F_{1z}L_{1z} - F_{1z}L_{1z} - F_{1y}L_{1z} \right)^{T}$
同理, T_{PMA2} 和 T_{PMA3} 可以通过该式计算出来。

2 肩关节的工作空间优化

为了便于直观地表达并联机构的机构参数对姿态空间的影响,把一定步长内搜索到的符合要求的姿态空间点数 N 作为其机构工作空间的评价指标^[7]。点数 N 越多,说明机构所能达到的姿态角度越大,即工作空间越大。

根据并联机构的驱动特性,气动人工肌肉的收缩率是 影响姿态角大小的关键约束。由试验可知,气动人工肌肉 的伸缩率最大可达 25%。设 L_i 表示 B_i 与 A_i 之间的距离 (i=1,2,3), l_i 表示 B_i 与 C_i 之间距离(i=1,2),考虑气动人 工肌肉两端长度和球铰安装长度,所以气动人工肌肉驱动 长度 L_i 和 l_i 满足如下关系:

$$L_{\min} \leq L_i \leq L_{\max} \quad (i=1,2,3)$$

$$l_{\min} \leq l_i \leq l_{\max} \quad (i=1,2)$$
(9)

由机构构型可知,为避免人工肌肉与小运动平台干涉 并使人工肌肉能发挥最大伸缩量,小运动平台的半径 R_c和 固定平台半径 R_i与大运动平台的半径 R_a满足如下关系:

$$R_A < R_B, R_C < R_B \tag{10}$$

在运动过程中,大运动平台、末端执行器和负载的重 力对机构有一负载力矩,为克服此力矩,存在气动人工肌 肉驱动的最小输出力矩:

$$g(L \ l \ R_{A} \ R_{B} \ R_{C} \ m \ \theta_{0}) = \left[(T_{PMA1})_{x} + (T_{PMA2})_{x} + (T_{PMA3})_{x} - M_{x} \\ (T_{PMA1})_{y} + (T_{PMA2})_{y} + (T_{PMA3})_{y} - M_{y} \\ (T_{PMA1})_{y} + (T_{PMA2})_{y} + (T_{PMA3})_{y} - M_{y} \right] > 0$$
(11)

根据前述机构的构型分析,确定3自由度转动并联机 构待优化结构参数初值如下:

 $\boldsymbol{X} = (\boldsymbol{L} \quad \boldsymbol{l} \quad \boldsymbol{R}_{\boldsymbol{A}} \quad \boldsymbol{R}_{\boldsymbol{B}} \quad \boldsymbol{R}_{\boldsymbol{C}} \quad \boldsymbol{m} \quad \boldsymbol{\theta}_{\boldsymbol{0}})^{T} =$

 $(59 \ 89 \ 23 \ 128 \ 17 \ 40 \ 31.5)^{T}$

图 2 分别为 3 自由度转动并联机构姿态工作空间内 部点集数量 N 随 L、l、R_A、R_B、R_C、m、θ₀的变化图,可以发现 并联机构的结构参数对工作空间有很大的影响,所以有必 要对机构参数进行优化。

确定3自由度转动并联机构待优化结构参数变化范 围如下:

 $\begin{cases} 40 \le L \le 100, \ 80 \le l \le 150\\ 20 \le R_A \le 50, \ 100 \le R_B \le 200\\ 10 \le R_C \le 50, \ 40 \le m \le 120, \ 10^\circ \le \theta_0 \le 90^\circ \end{cases}$

以机构的姿态空间最大化为优化目标,利用 Matlab 编写 程序,经过114代的迭代计算得到遗传算法的寻优性能跟踪 图如图3所示,相应的机构参数优化值如表1所示。

对应于优化前后,分别计算出 3 自由度转动并联机构 姿态工作空间内点数(N)及工作空间绕固定轴 O_1x_1 、 O_1y_1 、 O_1z_1 的转角 γ , β 、 α 的大小。姿态工作空间内的点数 N 由优化前的 21 150 个增加到 70 824 个, γ 范围由-15°~ 15°扩大到-21°~21°, β 由-11°~15°扩大至-18°~18°, α 由-52°~0°扩大至-91°~0°。由此可见,姿态工作空间点 数增加了 234.9%,工作空间明显增大。优化前后的姿态

空间如图4、图5所示。

绘制并联机构优化前后 $\gamma - \beta$ 平面、 $\beta - \alpha$ 平面、 $\gamma - \beta - \alpha$ 空间三维点图,通过图 4 和图 5 的对比,可以直观看出姿态工作空间明显增大,并联机构的运动性能达到较大提高,得到满意优化效果。

表1 仿生肩关节机构参数优化值

参数	优化值	
O_2 与固定平台之间距离(L)/mm	40.172	
O_2 与操纵器之间距离 $(l)/mm$	103.743	
固定平台上虎克铰所在半径 (R_A) /mm	20.142	
大运动平台上虎克铰所在半径 $(R_B)/mm$	128.261	
小运动平台上虎克铰所在半径 $(R_A)/mm$	10.911	
C_1 、 C_2 所在平面与 O_2 的距离(m)/mm	43.411	
O_2C_1 和 $O_2\gamma_2$ 所夹初始角度(θ_0)/(°)	11.6	

(下转第146页)