DOI:10.19344/j.cnki.issn1671-5276.2022.01.047

基于并联 RSO 优化自抗扰的 PMSM 速度控制

付文强,赵东标,刘凯,赵世超

(南京航空航天大学 机电学院,江苏 南京 210016)

摘 要:为提高永磁同步电机调速系统的速度精度及抗干扰能力,提出一种并联降阶状态观测器优化线性自抗扰控制的方法。对传统线性扩张状态观测器进行改进,设计了降阶状态观测器。为了提升控制器在有限带宽内的抗扰动能力,设计并联型的降阶状态观测器。仿真结果表明,控制系统的速度精度和鲁棒性得到明显的提升。 关键词:永磁同步电机;降阶状态观测器;线性自抗扰控制;速度控制 中图分类号:TM341 文献标志码:A 文章编号:1671-5276(2022)01-0184-04

PMSM Speed Control Based on Active Disturbance Rejection Control Optimized by Parallel Reduced-order State Observer

FU Wenqiang, ZHAO Dongbiao, LIU Kai, ZHAO Shichao

(College of Mechanical and Electronic Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China)

Abstract: To improve the speed accuracy of PMSM speed regulation system and the anti-disturbance ability, a control method based on linear active disturbance rejection control optimized by parallel reduced-order state observer is proposed. The traditional linear extended state observer is improved and the reduced-order state observer is designed. In order to improve the anti-disturbance ability of the controller within the limited bandwidth, a parallel reduced-order state observer is designed. Simulation results demonstrate that the speed accuracy and robustness of the control system are further upgraded.

Keywords: permanent magnet synchronous motor; reduced-order state observer; linear active disturbance rejection controller; speed control

0 引言

永磁同步电机结构简单,功率密度高,已被广泛应用于 各个领域^[1]。由于其是一个强耦合、多变量的复杂系统,使 用传统的 PI 控制很难提高其调速性能。随着控制理论的 发展,越来越多的非线性控制方法被提出,如鲁棒控制^[2]、 滑模控制^[3]、无源控制^[4]、自抗扰控制^[5](ADRC)等。

ADRC 结合了现代控制理论和经典 PID 控制的优点。 ADRC 主要由跟踪微分器,误差反馈控制律和扩张状态观测器组成^[6]。扩张状态观测器是 ADRC 的核心,其可以 对扰动进行观测^[7]。控制器通过对观测的扰动进行补偿 将控制对象转化为积分串联型系统^[8]。但是,状态观测 器的观测精度容易受到扰动量的大小和带宽的影响。文 献[9]提出了一种最小二乘支持向量机优化 ADRC 的方 法,取得了良好的控制效果。

为了提高 PMSM 调速系统的速度精度和鲁棒性,本 文提出了一种基于并联降阶状态观测器优化线性自抗扰 控制(LADRC)的方法,不仅保留了线性自抗扰参数易整 定的优点,还提升了控制器的抗扰动能力,增强了系统的 鲁棒性。仿真结果表明,该方法能够提高系统的速度精度 和抗干扰能力。

1 永磁同步电机数学模型

对于 PMSM 的研究,常有以下假设^[10]:1)忽略磁路饱 和效应;2)忽略磁滞和涡流损耗;3)磁场空间呈正弦分 布。在 *d-q* 轴系下得到如下表达式:

$$\begin{cases} \frac{\mathrm{d}i_d}{\mathrm{d}t} = -\frac{R_s i_d}{L_d} + \frac{n_p \omega_m L_q i_q}{L_d} + \frac{u_d}{L_d} \\ \frac{\mathrm{d}i_q}{\mathrm{d}t} = -\frac{R_s i_q}{L_q} - \frac{n_p \omega_m L_d i_d}{L_q} - \frac{n_p \omega_m \Psi_r}{L_q} - \frac{u_q}{L_q} \\ \frac{\mathrm{d}\omega_m}{\mathrm{d}t} = \frac{3}{2J} n_p [\Psi_r i_q + (L_d - L_q) i_d i_q] - \frac{T_L}{J} - \frac{B\omega_m}{J} \end{cases}$$
(1)

式中: i_{d} 、 i_{q} 为定子绕组在同步旋转坐标系下的电流分量; u_{d} 、 u_{q} 为定子绕组在同步旋转坐标系下的电压分量; R_{s} 、 L_{q} 、 L_{d} 分别为定子的电阻和电感; ω_{m} 为转子的机械角速 度; Ψ_{r} 为转子永磁磁链; n_{p} 为极对数;J、B分别为转动惯 量和阻尼系数; T_{r} 为负载转矩。

对于隐极式 PMSM, d 轴和 q 轴的绕组电感相等, 代入式(1), 可以得出其运动方程如下:

基金项目:国家重点基础研究发展计划资助项目(973 计划;2014CB046501)

第一作者简介:付文强(1994—),男,江西南昌人,硕士研究生,研究方向为电机控制。

$$\frac{\mathrm{d}\omega_m}{\mathrm{d}t} = \frac{3}{2J} n_p \Psi_r i_q - \frac{T_L}{J_{\Sigma}} - \frac{B\omega_m}{J_{\Sigma}}$$
(2)

式中 J_{Σ} 为等效转动惯量。

2 传统线性 ADRC 速度控制

对于式(2),将电机的运动方程简化为

$$\boldsymbol{\omega}_{m} = a(t) + bu \tag{3}$$

式中: $u=i_q; a(t) = -(T_L + B\omega_m)/J_{\Sigma}; b = 1.5n_p \Psi_r/J_{\Sigma}; a(t)$ 视为系统的总扰动。

针对式(3)所示系统,跟踪微分器可以用一阶惯性环 节代替,其表达式如式(4)所示。

$$\begin{cases} e_1 = v_1 - \boldsymbol{\omega}_m^* \\ \vdots \\ v_1 = -r_1 e_1 \end{cases}$$
(4)

式中: v_1 为跟踪的输入信号; r_1 为跟踪因子。

该控制器线性扩张状态观测器的数学模型为

$$\begin{cases} e_{1} - z_{1} & \omega_{m} \\ \vdots \\ z_{1} = z_{2} - \beta_{01} e_{2} + bu \\ \vdots \\ z_{2} = -\beta_{02} e_{2} \end{cases}$$
(5)

式中: z_1 为 ω_m 的跟踪值; z_2 为扰动的观测值; β_{01} 、 β_{02} 为增益系数。

经过对扰动的补偿可以将系统转换成一个积分环节, 采用比例控制律就可以实现很好的控制。针对式(3)所 示系统的反馈控制律表达式如下:

$$\begin{cases} e_3 = v_1 - z_1 \\ u_0 = k_1 e_3 \\ u = u_0 - \frac{z_2}{b} \end{cases}$$
(6)

式中 k₁ 为比例调节因子,和系统的带宽有关。

控制器需要整定的参数分别为 r_1 、 β_{01} 、 β_{02} 、 k_1 。其中 β_{01} , β_{02} 可以根据观测器的带宽进行统一整定,有 β_{01} = $2\omega_e$, $\beta_{02} = \omega_e^2$, ω_e 为所设计的观测器带宽。得到传统 LADRC速度控制器结构如图1所示。

图 1 速度环线性自抗扰控制器结构

3 并联降阶状态观测器速度控制

3.1 降阶状态观测器设计

式(5)中,线性状态观测器不仅观测了扰动值,还对 速度 ω_m 进行了观测。实际上反馈的速度信号可以利用 传感器检测,观测的速度可能受到噪声以及观测器带宽的 影响。因此,可对上述扩张状态观测器进行降阶处理。 首先建立式(3)所示系统的状态方程,设 x_1 为 ω_m 的 状态变量, x_2 为a(t)的状态变量,得到其状态方程如下:

$$\begin{cases} x_1 = x_2 + bu\\ \vdots\\ x_2 = a(t) \end{cases}$$
(7)

由于 x1 已知, x, 未知, 构建出如下降阶观测器:

$$\begin{cases} z_2 = -\beta_{03}(z_2 - x_2) \\ \vdots \\ x_2 = x_1 - bu \end{cases}$$
(8)

式中β₀₃为观测器的带宽。

由式(8)可得 RSO 最终表达式如下:

$$z_2 = -\beta_{03} z_2 + \beta_{03} x_1 - \beta_{03} bu \tag{9}$$

式(9)中含有 x_1 的微分项,微分项的引入往往对噪声特别敏感,为此采用间接的方法对上式进行变换。定义一个新的状态变量 $x_3 = x_2 - \beta_{03}x_1$,定义其状态估计值为 z_3 ,将式(9)简化得到:

$$\begin{cases} \dot{z}_{3} = -\beta_{03}z_{3} - \beta_{03}^{2}x_{1} - \beta_{03}bu\\ z_{2} = z_{3} + \beta_{03}x_{1} \end{cases}$$
(10)

式(10)完成对系统扰动 *a*(*t*)的估计,且不含速度的 微分项,不会放大噪声,具有更好的适应性。所得到降阶 状态观测器的结构如图 2 所示。

图 2 降阶状态观测器结构图

反馈控制率仍采用线性比例控制:

$$\begin{cases} e_{3} = v_{1} - \omega_{m} \\ u_{0} = k_{2}e_{3} \\ u = u_{0} - \frac{z_{2}}{b} \end{cases}$$
(11)

式中k2为比例系数,和系统带宽有关。

定义误差 $e_4 = x_2 - z_2$,由式(7)和式(9)可得降阶状态 观测器的误差状态方程如下:

$$\dot{e}_{4} = \dot{a}(t) - \beta_{03} e_{4} \tag{12}$$

式(12)的特征方程为 det(s)= $s+\beta_{03}$ 。因此,只要 $\beta_{03}>0$,同时扰动项 a(t)有界,那么降阶状态观测器就是稳定的^[11]。

3.2 速度控制器设计

当扰动幅值较大时,会存在一定的观测器误差^[12]。 假设系统总的扰动 *a*(*t*)中存在观测器误差 *f*',则有

$$a(t) = z_2 + f'$$
 (13)

为了消除观测器误差带来的影响,在原控制系统中并

联一个 RSO,用于对误差f'进行观测。

由式(3)和式(11)可知,系统通过补偿得到理想的积 分型系统,若观测器存在误差 f',则有

$$\omega_m = bu_0 + f'$$
 (14)
根据式(14)定义状态变量 $x'_1 = \omega_m - bu_0 / s, x'_2 = f', 可得状态方程如下:$

$$\begin{cases} x_1' = x_2' \\ x_2' = f' \end{cases}$$
(15)

式(15)和式(7)相似,只是式(15)观测的是系统与理 想积分型之间的误差,实现对观测器误差进行实时的观 测。根据以上对降阶观测器的设计,得到对f'观测的降阶 状态观测器方程如下:

$$\dot{z}'_{2} = -\beta_{04} z'_{2} + \beta_{04} x'_{1} \tag{16}$$

式中:β₀₄为并联降阶观测器的带宽;z₂为f'的估计值。

同理,为了减轻微分项的干扰,定义新的状态变量 $x'_3 = x'_2 - \beta_{10}x'_1$,定义其估计值为 z'_1 ,则有

$$\begin{pmatrix} z_{3}' = -\beta_{04} z_{3}' - \beta_{04}^{2} x_{1}' \\ z_{2}' = z_{3}' + \beta_{04} x_{1}' \end{cases}$$
(17)

式(17)完成了对f'估计,对此,反馈控制律的设计也做出相应的修改:

$$\begin{cases} e_3 = v_1 - \omega_m \\ u_0 = k_2 e_3 \\ u = u_0 - \frac{z_2 + f'}{b} \end{cases}$$
(18)

将式(18)所示控制律代入式(3)就得到了更为精确 的纯积分系统。为了减少反馈速度噪声对观测器的干扰, 将反馈信号也增加一个跟踪微分器,不仅能够对噪声进行 滤波处理,还能消除反馈信号与输入信号因跟踪微分器所 带来的相位滞后。所设计的速度控制器需要整定的参数 为: r_1 , β_{03} , β_{04} , k_2 ,其中 $\beta_{03} = \beta_{04}$,为降阶状态观测器的带 宽。该速度控制器结构如图 3 所示。

图 3 并联降阶状态观测器速度自抗扰控制器结构

根据以上设计,电流环采用 PI 前馈解耦控制。可以 得到本文设计的速度控制结构如图 4 所示。

图 4 PMSM 速度控制系统框图

4 仿真试验

为了验证所设计控制策略的有效性,在 Matlab/ Simulink 中分别搭建如图 4 所示的本文所设计的控制系统、 传统 PI 控制的调速系统以及传统线性 ADRC 调速系统,进行 仿真对比研究。本文研究的对象是飞机应急电源地面模拟 试验台的驱动电机,该驱动电机的具体参数如表 1 所示。

表1 电机参数

物理含义	数值
电阻 R_s / Ω	0.007 47
d 轴电感 L_d /mH	0.294
q 轴电感 L_q /mH	0.294
转动惯量 $J_{\Sigma}/(\text{kg}\cdot\text{m}^2)$	0.084
磁链 Ψ_r /Wb	0.120 8
极对数 n_p	3

1)速度跟踪仿真试验

该仿真试验策略如下:在电机空载的情况下,设定初 始参考速度为3000 r/min;在1s时将参考转速设定为 6000 r/min;在2s时,将参考速度突降为4000 r/min;在 3s时,将参考转速下降为1000 r/min。得到仿真结果如 图5所示。对比图5(a)与图5(b)可知,采用PI控制时, 速度跟踪存在一定的超调,超调量最大可达2%;而采用 线性 ADRC 或是本文设计的控制算法,可以实现无超调跟 踪。结合图5(a)和图5(b)的稳态速度放大图可以看出, 本文设计的控制算法和传统线性 ADRC 控制算法稳态速 度精度都比 PI 控制要高。在低速时,如图5(b)中 1000 r/min,本文控制算法具有更小的稳态误差。

2) 负载突变仿真试验

为了验证控制策略在负载突变时的适应性,设计如下 仿真试验:电机空载启动,设定稳态转速为6000r/min;当 电机达到稳态转速后,在1s时突加160N·m的负载转 矩:转速达到稳定之后,在2s时,将载荷卸去,得到系统的 速度响应曲线如图 6 所示。表 2 和表 3 为速度超调量和 稳态误差的计算值。

图 6 突加突卸 160 N·m 负载时速度响应曲线

	表 2	表 2 速度超调量		单位:%
项目	ነ	速时	加载时	卸载时
PI 控制		2.1	2.00	1.98
传统线性 ADRC	0 1.0		1.06	1.06
本文控制策略		0	0.57	0.57
	表 3 稳态速度精度 单位:%			单位:%
而日		<u> 고 카이 머니</u>		
坝口		加载时		卸载时
·····································		加载时 0.025		卸载时 0.033
PI 控制 传统线性 ADRC		加载时 0.025 0.008		卸载时 0.033 0.008
PI 控制 传统线性 ADRC 本文控制策略		ル戦时 0.025 0.008 0.008		卸载时 0.033 0.008 0.008

由图 6(a) 可知,采用传统 PI 控制,无论是加速到稳 定转速,还是突加突卸载荷时,速度超调量都特别大。 表 2 显示, PI 控制的超调量最大达到 2.1%。而 ADRC 控 制在转速上升的时候几乎没有超调,但是相比较之下,传 统线性 ADRC 在负载突变时超调量明显大于本文所设计 的控制策略,传统线性 ADRC 在负载突变时速度超调量达 到了1.06%,本文控制策略速度超调量仅为0.57%。这是 因为负载突变产生的扰动较大,对于传统线性 ADRC,其 观测器受到带宽的限制,容易受到扰动幅值的影响;而本 文设计的速度控制器采用两个降阶的观测器,在保证带宽 的情况下还可以观测出观测器的误差,能够提高控制系统 的抗干扰能力。同时,可以看出在负载扰动产生之后,PI 控制器回复时间最长,其次是线性 ADRC 控制器,然后是 本文设计的控制器,说明本文设计的控制器能够加快系统 受到扰动之后的回复速度。图 6(b)反映的是在负载突变 达到稳定之后速度稳态精度,可以看到,PI 控制的稳态误 差最大,可达 0.033%。传统线性 ADRC 和本文设计的控 制策略稳态速度波动都相对较小。

5 结语

线性 ADRC 控制器可以不依赖于准确的数学模型,对 系统的扰动进行观测和补偿。但是线性状态观测器容易 受到带宽的限制,影响系统的抗扰动性能。采用并联降阶 状态观测器的方法,不仅保留了线性状态观测器参数易整 定的优点,同时还提高了系统的鲁棒性。仿真结果表明:

1)采用并联降阶状态观测器能够提高系统的稳态速 度精度:

2)使用本文提出的控制算法,系统具有更强的鲁棒 性,受到扰动之后,能够更快达到稳定。

参老文献,

- [1] 白雪儿,杨向宇,白雪宁. 基于 DOB 的永磁同步电机蚁群优 化鲁棒控制[J]. 机械制造与自动化,2020,49(5):172-176.
- [2] 侯利民,申鹤松,阎馨,等. 永磁同步电机调速系统 H∞ 鲁棒 控制[J]. 电工技术学报,2019,34(7):1478-1487.
- [3] UTKIN V I. Sliding mode control design principles and applications to electric drives [J]. IEEE Transactions on Industrial Electronics, 1993, 40(1):23-36.
- [4] 吴忠强, 谭拂晓. 永磁同步电动机混沌系统的无源化控 制[J]. 中国电机工程学报,2006,26(18):159-163.
- [5] DENG F J, GUAN Y P. PMSM vector control based on improved ADRC [C]//2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE). Lanzhou, China: IEEE, 2018: 154-158.
- [6] SONG W. ADRC and feedforward hybrid control system of PMSM[J]. Mathematical Problems in Engineering, 2013;1-12.
- [7] MEI D, YU Z Q. Active disturbance rejection control strategy for airborne radar stabilization platform based on cascade extended state observer [J]. Assembly Automation, 2020, 40(4):613-624.
- [8] HAN J Q. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics, 2009, 56 (3): 900-906
- [9] 刘英培,栗然,梁海平. 基于最小二乘支持向量机优化自抗扰 控制器的永磁同步电机直接转矩控制方法[J]. 中国电机工 程学报,2014.34(27):4654-4664.
- [10] NA R S, WANG X D. An improved vector-control system of PMSM based on fuzzy logic controller [C]//2014 International Symposium on Computer, Consumer and Control. Taichung, Taiwan, China: IEEE, 2014: 326-331.
- [11] 付晓辉. 永磁同步电机的负载扭矩观测与补偿控制研 究[D]. 广州:华南理工大学,2010.
- [12] 郭海宇,杨俊友,张晓光,等. 永磁同步电梯门机改进型自抗 扰控制策略[J]. 哈尔滨工业大学学报,2018,50(9):191-198.

收稿日期:2020-11-25