DOI:10.19344/j.cnki.issn1671-5276.2022.05.028

基于 D-H 参数的 ABB IRB2600 机器人 运动学分析与仿真

叶泉1.王建华2

(1. 南京机电职业技术学院 自动化工程系,江苏 南京 211306;2. 江苏省特种设备安全监督检验研究院 起重机检验中心,江苏 南京 210000)

摘 要:从某典型 6R 工业机器人为研究对象,通过其结构图建立连杆坐标系、D-H参数表和 结构参数下的齐次变换矩阵。利用 MATLAB 对该机器人正、逆运动学问题进行分析和运算,与 RobotStudio 机器人控制系统中的数据对比,表明两者结果一致,验证了模型的准确性。通过进 行关节空间轨迹规划,分析机器人关节的稳定性。 关键词:工业机器人;D-H参数法;机器人运动学仿真;轨迹规划 中图分类号:TP242 文献标志码;A 文章编号:1671-5276(2022)05-0114-04

Kinematics Analysis and Simulation of ABB IRB2600 Robot Based on D-H Parameters

YE Quan¹, WANG Jianhua²

(1. Department of Automation Engineering, Nanjing Vocational Institute of Mechatronic Technology,

Nanjing 211306, China; 2. Crane Inspection Center, Jiangsu Institute of Special Equipment Safety

Supervision and Inspection, Nanjing 210000, China)

Abstract: With a typical 6R industrial robot as the research object, its linkage coordinate system, D - H parameter table and the homogeneous transformation matrix under the structural parameters are established through its structure diagram. The forward and inverse kinematics problems are analyzed and calculated by MATLAB, and compared with the data in the RobotStudio robot control system. The results show that the two outcomes are consistent, which verifies the accuracy of the model. The final step is taken to analyze the stability of robot joints by joint space trajectory planning.

Keywords: industrial robot; D - H parameter method; robot kinematics simulation; trajectory planning

0 引言

ABB IRB2600 机器人为典型的 6R 工业机器人,该款 机器人在搬运、上下料、弧焊等行业应用广泛,最高载荷达 到了 20 kg。对该款机器人进行运动学分析与仿真对于研 究 6R 或者 ABB 品牌的工业机器人的运动学问题有重要 的参考意义^[1]。

正运动学和逆运动学组成了机器人的运动学问题,对 这些问题的解决方法一般有 D-H 参数法和旋量法^[2]。 DENAVIT J 等提出了 D-H 参数法,在此方法中机器人相 邻坐标系 i 和 i-1 的关系可以用齐次变换矩阵的方法来 描述^[3]。目前对机器人逆运动学常见的解决方法有解析 法、几何法、迭代法、几何解析组合算法以及符号与数值算 法等^[4]。

现以 ABB 公司的 IRB2600 型机器人作为本文的研究 对象,通过该型机器人的结构图样建立了基于 D-H 参数 的变换坐标系和运动学矩阵^[5]。运用编程建立 IRB2600 型机器人的运动学模型^[6],并计算正、逆运动学模型结 果,所建立的模型符合应用要求,可以对同型号机器人的 研究起到支撑作用。

1 机器人结构参数

IRB2600 机器人的结构尺寸如图 1 所示。根据 D-H 参数法分析机器人结构,找出各关节轴,将机械臂简化成 连杆机构,并在每个连杆上定义一个固连坐标系,可得 IRB2600 机器人连杆坐标系,如图 2 所示。

基金项目:质检总局项目(KJ175940);2021年度高校哲学社会科学研究一般项目(2021SJA0776);江苏省高校"青蓝工程"优秀青年骨 干教师资助项目(苏教师函[2022]29号)

第一作者简介:叶泉(1987—),女,江苏南京人,讲师,硕士,研究方向为工业机器人。

图 1 IRB2600 机器人的基本结构和装配图

用以下 4 个参数来描述 IRB2600 型机器人: a_i 为沿 x_i 轴从 z_i 移动到 z_{i+1} 的距离; α_i 为绕 x_i 轴从 z_i 旋转到 z_{i+1} 的 角度; d_i 为沿 z_i 轴从 x_{i-1} 移动到 x_i 的距离; θ_i 为绕 z_i 轴从 x_{i-1} 旋转到 x_i 的角度。由此得到 IRB2600 机器人 D-H参 数如表 1 所示。

表1 IRB2600 机器人 D-H 参数

连杆 <i>i</i>	$lpha_i/(\circ)$	<i>a_i</i> /mm	d_i/mm	$oldsymbol{ heta}_i$ / ($^\circ$)	关节范围/(°)
1	-90	150	445	θ_1	[-180,180]
2	0	700	0	$\theta_2 - 90$	[-95,155]
3	-90	115	0	θ_3	[-180,75]
4	90	0	795	θ_4	[-400,400]
5	-90	0	0	θ_5	[-120,120]
6	0	0	85	$\theta_6 - 180$	[-400,400]

2 机器人的运动学分析

根据机器人的关节角度解析末端执行器的姿态和位置,即机器人运动学的问题^[7]。根据表1中给定的参数,可以建立IRB2600型机器人的齐次变换矩阵,如下所示。

$$\begin{bmatrix} i^{-1}_{i} \mathbf{T} = \operatorname{Rot}(z, \theta_{i}) \operatorname{Trans}(z, d_{i}) \operatorname{Trans}(x, a_{i}) \operatorname{Rot}(x, \alpha_{i}) = \\ \cos \theta_{i} - \sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

为表达简洁,以下将 $\sin\theta_i$ 和 $\cos\theta_i$ 分别记作 $s\theta_i$ 和 $c\theta_i$, 将 $\sin(\theta_m + \theta_n)$ 和 $\cos(\theta_m + \theta_n)$ 分别记作 $s\theta_{mn}$ 和 $c\theta_{mn}$ 。根据 表 1 中的 *D*-*H* 参数,机器人各连杆坐标系之间的变换矩 阵如下所示。

$${}^{0}_{1}\boldsymbol{T} = \begin{bmatrix} c\theta_{1} & 0 & -s\theta_{1} & 150c\theta_{1} \\ s\theta_{1} & 0 & c\theta_{1} & 150s\theta_{1} \\ 0 & -1 & 0 & 445 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2)

0 $700c\theta_2$ $c\theta_{2}$ $-s\theta_2$ 0 $700s\theta_2$ $s\theta_2$ $c\theta_{2}$ $^{1}{}T =$ (3)0 0 0 1 0 0 0 1 $c\theta_3$ 0 $-s\theta_3$ $115c\theta_3$ $115s\theta_2$ 0 $c\theta_2$ $s\theta_3$ ${}^{2}_{3}T =$ (4)0 0 0 -1 0 0 0 1 $c\theta_4$ 0 $s\theta_4$ 0 0 $s\theta_4$ 0 $-c\theta_4$ ${}^{3}_{4}T =$ (5)0 0 795 1 0 0 0 1 $c\theta_5$ $-s\theta_5 = 0$ 0 0 $s\theta_5$ 0 $c\theta_5$ ${}^{4}_{5}T =$ (6)0 -1 0 0 0 0 0 1

$$\boldsymbol{T} = \begin{bmatrix} c\theta_6 & -s\theta_6 & 0 & 0\\ s\theta_6 & c\theta_6 & 0 & 0\\ 0 & 0 & 1 & 85\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(7)

将 IRB2600 机器人各个连杆坐标系相乘,可以得出一 个新的变换矩阵。如下所示,为第6坐标系相对于第0坐 标系的变换矩阵^[8]:

$${}^{0}_{6}\boldsymbol{T} = {}^{0}_{1}\boldsymbol{T}_{2}^{1}\boldsymbol{T}_{3}^{2}\boldsymbol{T}_{4}^{3}\boldsymbol{T}_{5}^{4}\boldsymbol{T}_{6}^{5}\boldsymbol{T} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(8)

式中:

 $n_{x} = c\theta_{1}c\theta_{23} (c\theta_{4}c\theta_{5}c\theta_{6} - s\theta_{4}s\theta_{6}) - s\theta_{1} (s\theta_{4}c\theta_{5}c\theta_{6} + c\theta_{4}s\theta_{6}) - c\theta_{1}s\theta_{23}s\theta_{5}s\theta_{6}$ (9) $n_{y} = s\theta_{1}c\theta_{23} (c\theta_{4}c\theta_{5}c\theta_{6} - s\theta_{4}s\theta_{6}) - c\theta_{1} (s\theta_{4}c\theta_{5}c\theta_{6} + c\theta_{4}s\theta_{6}) - s\theta_{1}s\theta_{23}s\theta_{5}s\theta_{6}$ (10) $n_{z} = s\theta_{23} (s\theta_{4}s\theta_{6} - c\theta_{4}c\theta_{5}c\theta_{6}) - c\theta_{23}s\theta_{5}c\theta_{6}$ (11)

$o_x = -c\theta_1 c\theta_{23} \left(c\theta_4 c\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_4 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_5 c\theta_6 + s\theta_6 c\theta_6 \right) + s\theta_2 \left(s\theta_6 c\theta_6 - s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 - s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 - s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 - s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 - s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 - s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 - s\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 c\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 c\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 c\theta_6 c\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 c\theta_6 c\theta_6 c\theta_6 c\theta_6 \right) + s\theta_1 \left(s\theta_6 $	$\theta_4 c \theta_5 s \theta_6 -$
$c\theta_4 c\theta_6$) + $c\theta_1 s\theta_{23} s\theta_5 s\theta_6$	(12)
$o_{y} = -s\theta_{1}c\theta_{23} (c\theta_{4}c\theta_{5}s\theta_{6} + s\theta_{4}c\theta_{6}) + c\theta_{1} (s\theta_{5})$	$\theta_4 c \theta_5 s \theta_6 -$
$c\theta_4 c\theta_6$) + $s\theta_1 s\theta_{23} s\theta_5 s\theta_6$	(13)
$o_{z} = s\theta_{23}(c\theta_{4}c\theta_{5}s\theta_{6} + s\theta_{4}c\theta_{6}) + c\theta_{23}s\theta_{5}s\theta_{6}$	(14)
$a_x = -c\theta_1 c\theta_{23} c\theta_4 s\theta_5 + s\theta_1 s\theta_4 s\theta_5 - c\theta_1 s\theta_{23} c\theta_5$	(15)
$a_{y} = -s\theta_{1}c\theta_{23}c\theta_{4}s\theta_{5} + c\theta_{1}s\theta_{4}s\theta_{5} - s\theta_{1}s\theta_{23}c\theta_{5}$	(16)
$a_z = s\theta_{23}c\theta_4s\theta_5 - c\theta_{23}c\theta_5$	(17)
$p_x = -85c\theta_1 c\theta_{23} c\theta_4 s\theta_5 + 85s\theta_1 s\theta_4 s\theta_5 - c\theta_1 s\theta_{23}$	$_{3}(85c\theta_{5} +$
$795) + 115c\theta_1 c\theta_{23} + 700c\theta_1 c\theta_2 + 150c\theta_1$	(18)
$p_{y} = -85s\theta_{1}c\theta_{23} c\theta_{4}s\theta_{5} + 85c\theta_{1}s\theta_{4}s\theta_{5} - s\theta_{1}s\theta_{23}$	$_{3}(85c\theta_{5} +$
$795) + 115 s\theta_1 c\theta_{23} + 700 s\theta_1 c\theta_2 + 150 s\theta_1$	(19)
$p_{z} = 85 \mathrm{s} \theta_{23} \mathrm{c} \theta_{4} \mathrm{s} \theta_{5} - \mathrm{c} \theta_{23} (85 \mathrm{c} \theta_{5} + 795) - 115 \mathrm{s} \theta_{23}$	$-700s\theta_{2}+$
445	(20)

3 运动学仿真

3.1 正运动学仿真验证

为了验证所得 D-H参数及运动学方程的正确性,利用 RobotStudio 对机器人进行正运动学仿真,在 RobotStudio 中 创建的机器人工作站^[9],设定任意给定 t_{hetal} -t_{heta4}的 4 组关 节角度,每设定一组角度,都在虚拟示教器中新建一个 "robtarget"类型的数据,通过查看数据数值可以得知每组 角度下机器人末端点的坐标。

运用 MATLAB 环境下的 RoboticsToolbox 工具箱,使用 其中的 Link 和 SerialLink 函数建立 IRB2600 机器人的运 动学模型。这里使用了 SerialLink.fkine 函数,在编程中该 函数的调用方式:T = R.fkine(q)。其中 R 代表需要建立 的机器人对象模型,q 是关节角度向量,T 是 4×4 的位姿 矩阵。将上述 4 组关节角度向量代入正运动学 fkine() 函数中,得到位姿矩阵 $T_1 - T_4$,进而得到机器人末端点的 位置坐标。

由正运动学方程计算和利用 RobotStudio 控制系统中 的数据得到机器人末端点位置坐标如表 2 所示,4 组关节 角度下的机器人数学模型如图 3 所示。由表 2 可知,计算 和仿真得到的结果是一致的。由此可知机器人建模是正 确的,且机器人正运动学分析正确。

表 2 不同取值方式得到的机器人末端点位置						
关共每座/(◎)	取值方式	机器人末端点的位置坐标/mm				
大节用度/()		x	у	z		
$t_{\rm hetal} = [10, 20,$	正运动学 方程计算	1 242.56	233.86	1 192.61		
-20, 30, 20, 90]	RobotStudio 仿真	1 242.56	233.86	1 192.61		
$t_{\rm heta2} = [-20, -40,$	正运动学 方程计算	527.1	-214.46	1 059.42		
40, -30, 30, 60]	RobotStudio 仿真	527.1	-214.46	1 059.42		
$t_{\rm heta3} = [60, 20,$	正运动学 方程计算	518.15	941.99	597.87		
20, 20, 50, 10]	RobotStudio 仿真	518.15	941.99	597.87		
$t_{\rm heta4} = [40, 30,$	正运动学 方程计算	972.99	797.16	808.72		
-10, -10, 90, 10]	RobotStudio 仿真	972.99	797.16	808.72		

图 3 4 组关节角度下的机器人数学模型

3.2 逆运动学仿真验证

逆运动学仿真应用到函数 SerialLink.ikine,反求各个 关节的转动角度,调用格式:q = R.ikine(T)。其中 R 代表 机器人对象,q 是关节角度向量,T 是 4×4 的位姿矩阵。 将上述 4 组关节角度解出位姿矩阵 $T_1 - T_4$ 代入逆运动学 ikine()函数中,得到关节角度向量 $q_1 - q_4$ 。

由逆运动学方程计算得到的机器人关节角度向量见 表 3。由表 3 可知,计算得到的结果经过换算和原设定关 节角度是一致的。再次证实机器人建模是正确的,机器人 逆运动学分析正确。

表 3 逆运动学计算结果

$\boldsymbol{T}_{1} = \begin{bmatrix} -0.150 \ 4 & 0.418 \ 4 & 0.895 \ 7 & 1.243 \ 0 \\ 0.852 \ 9 & -0.403 \ 3 & 0.331 \ 6 & 0.233 \ 9 \\ 0.500 \ 0 & 0.813 \ 8 & -0.296 \ 2 & 1.193 \ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\boldsymbol{q}_1 = [0.1745, -1.2217, -0.3491, 0.5236, 0.3491, -1.5708]$	
$\boldsymbol{T}_2 = \begin{bmatrix} -0.052\ 5 & 0.683\ 3 & 0.728\ 3 & 0.527\ 1 \\ 0.586\ 8 & 0.611\ 2 & -0.531\ 1 & -0.214\ 5 \\ -0.808\ 0 & 0.399\ 5 & -0.433\ 0 & 1.059\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	<i>q</i> ₂ = [-0.349 1, -2.268 9, 0.698 1, -0.523 6, 0.523 6, -2.094 4]	
$\boldsymbol{T}_{3} = \begin{bmatrix} -0.789 \ 9 \ -0.575 \ 5 \ -0.212 \ 1 \ 0.518 \ 1 \\ -0.608 \ 7 \ 0.777 \ 8 \ 0.156 \ 7 \ 0.942 \ 0 \\ 0.074 \ 7 \ 0.252 \ 9 \ -0.964 \ 6 \ 0.597 \ 9 \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}$	$q_3 = [1.047\ 2, -1.221\ 7, 0.349\ 1, 0.349\ 1, 0.872\ 7, -2.967\ 1]$	
$\boldsymbol{T}_4 = \begin{bmatrix} -0.826\ 7 & -0.543\ 2 & -0.146\ 4 & 0.973\ 0 \\ -0.470\ 5 & 0.810\ 2 & -0.349\ 5 & 0.797\ 2 \\ 0.308\ 5 & -0.220\ 1 & -0.925\ 4 & 0.808\ 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	q ₄ = [0.698 1, -1.047 2, -0.174 5, -0.174 5, 1.570 8, -2.967 1]	

・信息技术・

4 轨迹规划仿真

在机器人运动期间,机器人控制器能获取关于目标位 置和跟踪速度的稳定输入流。这种以时间函数形式对机 器人位置进行的指定被称为轨迹^[10]。关节空间规划、笛 卡儿空间轨迹规划为机器人一般轨迹规划方法^[11]。

选取 IRB2600 机器人可达空间中的两点,使用 jtraj 函

数编程,并计算得到了该型号机器人的轨迹。选取的两点的关节角度为 *t*_{heta1} = [0, -90, 0, 0, 90, -180], *t*_{heta2} = [90, -100, 40, 10, 60, -120],均匀采样 50 个点。

IRB2600 机器人 6 个关节的运动曲线如角位移、角速度、 角加速度等的变化可以使用软件绘制出来^[12],如图 4 所示。 通过绘制的图形可以看出,IRB2600 机器人在运动过程中没 有突然变速、停滞等现象,可知该型号机器人在生产应用中 较少产生振动,磨损量小,设计是可以满足实际要求的。

5 结语

ABB 公司的 IRB2600 机器人为本文的研究对象,通 过 ABB 公司的官方结构图建立了本型号机器人的连杆坐 标系和 D-H 参数表,建立坐标系 i 相对于坐标系 i-1 的齐 次变换矩阵。并利用 MATLAB 对该型号机器人的正、逆 运动学问题进行了分析和运算,同时在 RobotStudio 中新 建相应的工作站,并提取相同位姿下机器人角度和末端点 位置坐标数据。通过对比,表明通过 D-H 参数在 MATLAB 中计算出的正、逆解数据和 RobotStudio 中仿真 数据是一致的,证实本文的机器人连杆坐标系和 D-H参 数构建正确。通过 MATLAB 对 IRB2600 机器人进行轨迹 的分析和仿真,验证了本文建立的 IRB2600 机器人的参数 和矩阵的正确性,此理论基础可以为同类型机器人的研究 提供重要的支撑。

参考文献:

- [1] 赵艳云. 机器人手臂下棋运动的逆运动学分析与仿真[D]. 青岛:青岛大学,2009.
- [2] 朱庆浩,臧强,岳华,等.6 R 工业机器人的运动学分析与仿 真[J]. 中国科技论文,2020,15(8):953-958.
- [3] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-

pairmechanisms based on matrices [J]. Journal of Applied Mechanics, 1955, 22(2):215-221.

- [4] 祁行行. 工业机器人运动控制分析与研究[D]. 秦皇岛:燕山 大学,2014.
- [5] 李爱成. 4-DOF 关节式码垛机器人本体设计与运动学分析[D]. 合肥:合肥工业大学,2013.
- [6] 曾小婉. 焊接机器人的视觉引导及控制方法研究[D]. 天津: 天津大学,2018.
- [7] 郑哲恩. 新松 SR10 C 机器人绝对定位误差分析与补偿的研究[D]. 杭州:中国计量大学,2017.
- [8] 罗玉坤,周健,李立君,等. 基于旋量理论的 4-R(SS)²并联机 器人正运动学分析[J]. 机床与液压,2018,46(3):33-37.
- [9] YI Jinhua. 中央驱动式上肢康复机器人结构设计及轨迹规划[D]. 上海:上海理工大学,2014.
- [10] 凯文·M. 林奇, 朴钟字. 现代机器人学: 机构、规划与控制[M]. 于靖军, 贾振中, 译. 北京: 机械工业出版社, 2020.
- [11] 张文强. 齿轮打磨机器人设计和研究[D]. 沈阳:东北大学, 2011.
- [12] 邢红辉, 王保升, 洪磊, 等. 基于 MATLAB 的六自由度焊接机 器人的运动学仿真与轨迹规划[J]. 机械设计与制造工程, 2018,47(12):43-47.

收稿日期:2021-10-26