DOI:10.19344/j. cnki. issn1671-5276.2023.01.046

基于机器视觉的水表分拣系统研究

严冰,唐旭晟,朱博文

(福州大学 机械工程及自动化学院 福建 福州 350116)

摘 要:针对现阶段水表生产分拣主要依靠人工、自动化程度不高、效率低下等问题,对水表定 位、机械手自动抓取等问题进行研究,设计了一套基于机器视觉的水表分拣系统。通过颜色特 征粗定位水表区域,基于归一化内积相似性精定位水表,得到水表位姿;构建 Eye-to-Hand 手 眼标定模型并求解,将水表位姿转换到机械手坐标系,实现机械手对水表的精确抓取。研究结 果表明:该系统的定位误差在1.5 mm 以内,机械手能准确抓取水表,极大地提高水表上下料效 率,基本避免了人工失误。 关键词:水表定位;手眼标定;机器视觉;工业机械手

中图分类号:TP391.4; TP241.2 文献标志码:B 文章编号:1671-5276(2023)01-0184-05

Research on Water Meter Sorting System Based on Machine Vision

YAN Bing, TANG Xusheng, ZHU Bowen

(College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China)

Abstract: In relation to problems like manual sorting, low automation, and low efficiency etc. in present water meter production, water meter positioning and automatic grabbing by manipulators are studied, and a set of automatic water meter sorting system based on machine vision is designed. With the water meter area being roughly located by color features, the water meter is precisely positioned based on the normalized inner product similarity to obtain the water meter pose. The Eye-to-Hand calibration model is constructed and solved to convert the water meter pose to the robot coordinate system, with which the the water meter is accurately captured by manipulator. The research results show that the positioning error of the designed system is within 1.5 mm, and the manipulator can accurately grasp the water meter, which greatly improves the efficiency of water meter loading and unloading by basically avoiding the occurrence of manual errors.

Keywords: water meter positioning; hand-eye calibration; machine vision; industrial manipulator

0 引言

水表分拣是水表生产中的一个重要环节,其效率和准确性将直接影响水表生产的整体效率和质量。现阶段水 表生产线的分拣依靠的是人工操作,通过人眼定位和手动 抓取水表完成分拣,受分拣人员的身体状况影响极大,不 仅分拣速度低,而且出现失误的概率大。因此采用人工分 拣水表满足不了实际生产的高效需求,而且人工干预生产 也是工业发展的一大阻碍。

为了满足水表分拣的高效要求,本文阐述如何通过机 器视觉引导工业机器人分拣取代人工操作。赵彬^[1]对静 态工件和动态工件的分拣问题分别进行了研究,利用 OpenCV 视觉算法库对静态工件识别,MeanShit 算法搜索 动态工件,并利用 C++建立图像处理算法库。袁仁辉^[2] 首先利用基于 OpenCV 和基于 HALCON 的两种单目相机 标定方法求出相机内外参数,然后根据双目视觉系统的相 机结构模型,给出双目系统的标定方法和系统实现,最后 进行全局手眼标定,利用双目视觉引导机械手抓取工件。 GAO Y 等^[3]把 CNN 和 LSTM 相结合来处理时序特性的力 觉信息,利用 CNN 处理视觉信息,通过融合视觉和力觉多 模态信息进行物体材质的分类,可解决机器人在复杂环境 下的目标定位问题。这些研究结果都存在结构复杂、稳定 性和鲁棒性不足等缺点。为了解决这些问题,本文将设计 一套基于机器视觉技术定位水表并引导工业机器人抓取 的水表分拣系统。

1 视觉分拣系统平台搭建

本研究设计的 Eye-to-Hand 水表分拣系统,其硬件部 分主要由工业相机及镜头、上位机、工业机器人及其控制 柜、水表、传送带等组成。此外,还设计了吸盘式的机器人 手用于抓取水表,如图 1 所示。

1) 工业机器人。本平台所选用的机器人为 ABB IRB1200 型6自由度工业机器人,该机器人自质量为 54kg,末端最大负重可达7kg,该机器人有6个旋转关节, 6个自由度,运动灵活,精度较高,可以达到0.02 mm。从 理论上来说该机器人末端可以到达工作范围的任意位置 (除了机器人基座坐标系原点)。

2)图像采集系统。水表分拣环境复杂,各种因素都

第一作者简介:严冰(1996—),男,福建莆田人,硕士研究生,研究方向为机器视觉。

可能会影响获取到的图像质量。本研究选用的是某公司的 IMC-751G 彩色相机和 16 mm 定焦镜头作为图像采集 装置,并选用碗光源。

3)末端结构设计。由于水表表盘是镜面结构,吸附 性能好,因此采用最简单有效的吸盘式手抓结构。这里选 择直径为 50 mm 的吸盘,理论最大吸附力可达 15 kg,完全 能够满足水表抓取工作,此外还设计了吸盘和机器人末端 的连接件。

图 1 水表分拣台

2 分拣系统算法

针对水表的定位,本研究通过水表的颜色特征粗定位 水表区域,再以模板匹配精定位水表位姿,之后标定相机 内参,通过手眼标定将水表位姿转换到机器人坐标系,引 导机械手精确抓取水表。算法流程图如图2所示。

图 2 算法流程图

2.1 水表粗定位

由于水表出水口和入水口都是蓝色,因此本文利用颜 色特征实现水表的粗定位,以此来提高定位速度。蓝色分 量在 Lab 颜色空间中集中于 B 通道,比起其他颜色空间, 蓝色水表更易于分割。将滤波后的图像从 RGB 颜色空间 转 Lab 颜色空间,如图 3(a)所示。

为了使蓝色前景部分与背景区别更加明显,便于后续 分割,按式(1)将 B 通道的图像归一化到 0~255。归一化 后图像如图 3(b)所示。

$$B'(x,y) = \frac{B(x,y) - B(x,y)_{\min}}{B(x,y)_{\min} - B(x,y)_{\min}} \times 255$$
(1)

式中:B(x,y)表示图像未归一化时位于(x,y)处图像像素 值; $B(x,y)_{max}$ 表示图像中像素点的最大像素值; $B(x,y)_{min}$ 表示图像中像素点的最小像素值。

(a) Lab颜色水表图像空间 (b)归一化后b通道水表图像 图 3 识别图像颜色特征

由图 3(a)可知,水表前景与背景具有明显的区别,且 背景灰度分布较为均匀,并未出现较大幅度的变化,因此采 用由全局阈值分割算法——大津算法^[4]推广得到的双阈 值大津算法。由于水表前景部分的水表表盘和水表通水口 存在明显的灰度差,因此前景部分分为水表表盘和通水口 两部分,再加上背景部分,整个图像可分割为三部分^[5]。

國值 T_1 、 T_2 将图像分割为 C_0 、 C_1 、 C_2 三部分。 C_0 像素范 围为 $[0, T_1]$, C_1 像素范围为 $[T_1+1, T_2]$, C_2 像素范围为 $[T_2+1,255]$,则该双阈值选取公式如式(2)所示。

$$[T_1, T_2] = \operatorname{Argmax} \left[\sum_{k=0,1,2} u_k(T_1, T_2) \times (u_k(T_1, T_2) - u)^2 \right]$$
(2)

式中: u_k 为各部分均值;u为图像整体均值; T_1 、 T_2 为所选双 阈值。

由 B 通道图像灰度直方图(图 4)可知,波峰部分对应 背景,波峰左侧对应水表通水口部分,右侧对应水表圆形 表盘。由于水表圆形表盘是分布在水表通水口中间,因此 只需分割出水表通水口部分即波峰左侧即可。其分割方 式按照式(3)实现,其中*T*₁ = 100.107,分割结果如图 5(a) 所示。

采用形态学开运算消除干扰的小区域,开运算公式见式(4),开运算结果如图 5(b)所示。

$$Z = (A \Theta B) \oplus B \tag{4}$$

式中:*Z*为处理后的图像;*A*为待处理图像;*B*为形态学结构元素;Θ表示腐蚀操作,⊕表示膨胀操作。

图 5 B 通道图像二值化及开运算

在求取其前景区域的外接矩形时,将图5(b)中的前景点 坐标分别按行和列存储,并计算其最小行坐标、最小列坐标 以及最大行坐标、最大列坐标,之后再将外接矩形的宽扩大 1.5倍,高扩大2.5倍,最终提取的外接矩形如图6所示。

图 6 扩大后外接矩形

2.2 水表精定位

确定水表在图像中的大致位置后,采用基于归一化梯 度内积相似性模板匹配算法^[6]确定水表的准确位置。以 边缘梯度为相似性判断准则,不仅能通过设置相似度阈值 来加速其判断过程,同时对光照变化也具有鲁棒性。

首先构建图像金字塔模板,图像金字塔是图像多尺度 表达的一种方式,它由原始图像经过一定采样间隔而得到 的不同分辨率图像所形成的类似于金字塔结构,图像的分 辨率由下到上逐级递减。为了避免因违反奈奎斯特采样 定理而使图像出现混叠现象,图像必须进行低通滤波,例 如高斯滤波。求取图像金字塔公式为

 $G_{l+1}(i,j) = \sum_{m} \sum_{i} w(m,n) \ G_{l}(2i+m,2j+n)$ (5)

式中:w(m,n)为高斯模板;G_l为第 l 层分辨率。

本文所创建的模板图像金字塔如图 7 所示,设置层数 为 3。

图 7 图像金字塔示意图

本文采用 Canny 算子对图像进行边缘提取,以此来获 取图像的边缘特征点,并通过 sobel 算子进行轮廓点梯度 提取,以快速实现梯度计算。sobel 算子如式(6)和式(7) 所示。

$$\boldsymbol{G}(x) = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
(6)
$$\boldsymbol{G}(x) = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
(7)

$$\boldsymbol{G}(y) = \begin{bmatrix} 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$
(7)

将当前轮廓点的坐标转换为相对于轮廓中心点的相 对坐标,其计算公式如式(8)所示。x_r,y_r为轮廓中心点坐 标,x_i,y_i为相对于轮廓中心点的相对轮廓点坐标,n为点 的总数。

$$x_r = \frac{1}{n+1} \sum_{i=0}^{n} x_i$$
$$y_r = \frac{1}{n+1} \sum_{i=0}^{n} y_i$$
$$X_i = x_i - x_r$$
$$Y_i = y_i - y_r$$

将轮廓点的相对坐标和其对应的梯度值存储到数组 中并重复上述步骤直到完成所有层数的创建。

由于待匹配图像上的模板位置是不确定的,因此在进行匹配的时候,需要将模板经过刚性变换,例如旋转。设模型由一系列点 $P_i(x_i, y_i)^{\mathsf{T}}$ 组成的点集,并且每个点的梯度方向向量为 $d_i = (t_i, u_i)^{\mathsf{T}}, (i = 1, 2, \dots, n)$ 。待匹配图像点的方向向量为 $e_{x,y} = (v_{x,y}, w_{x,y}),$ 梯度方向向量可通过sobel 算子获得,则变换过的点坐标和梯度方向向量为p' = Ap, d' = Ad,其变换矩阵为

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
(9)

(8)

经过变换后的模型点与待匹配图像点的梯度内积相 似性计算公式如式(10)所示。

$$s = \frac{1}{n} \sum_{i=1}^{n} \frac{|\langle d'_{i}, e_{x,y} \rangle|}{||d'_{i}|| \cdot ||e_{x,y}||}$$
(10)

在进行相似度计算时,为了加快查找速度,在此设置 一个相似度阈值,若当前点的得分小于设置阈值,即停止 当前位置的计算,这样就能避免后续点的无效计算。其阈 值计算公式如式(11)所示。

$$\begin{cases} s_{\rm th} = \min \ (s_{\rm min} - 1 + f j/n, s_{\rm min} j/n) \\ f = (1 - g s_{\rm min}) / (1 - s_{\rm min}) \end{cases}$$
(11)

式中:*s*_{min}为人为设定的最小相似度分数;*g*为控制匹配速度的因子;*g*,*s*_{min}的取值范围为[0,1];*j*为已经参与计算点的个数;*s*_w为匹配分数阈值因子;*n*为模板轮廓点数。

对待匹配图像构建与模板图像相同层数的图像金字塔,并逐层匹配模板,最终匹配结果如图8所示。

图 8 轮廓匹配局部放大图

2.3 手眼标定

本研究采用张正友标定法^[7],不仅实现简单且鲁棒 性较强。本文所采用的标定板大小为 8×8,角点之间实际 长度 14 mm×14 mm,采集了 10 张现场图片作为标定图集, 如图 9 所示。利用 opencv 函数库编写标定代码对标定结 果求解,其误差如表 1 所示。

图9 标定图像

表1 标定误差表	单位:像素
误差项	数值
第1幅图像的平均误差	0.061 719 5
第2幅图像的平均误差	0.062 887 1
第3幅图像的平均误差	0.062 683 1
第4幅图像的平均误差	0.068 979 3
第5幅图像的平均误差	0.066 382 9
第6幅图像的平均误差	0.064 171 9
第7幅图像的平均误差	0.075 269 4
第8幅图像的平均误差	0.073 389 8
第9幅图像的平均误差	0.058 722 5
第10幅图像的平均误差	0.060 418 4
重投影误差	0.459 694 0
总体平均误差	0.065 462 4

由表1可知,各图像的平均标定误差均不超过0.1个 像素,且总体平均误差也小于0.1个像素,因此标定误差 满足本研究要求。

构建 Eye-to-Hand 手眼标定模型以求取相机坐标系和机器人基座坐标系的关系,得到 Eye-to-Hand 模型下的 *AX=XB*等式。本研究采取改进的矩阵直积法^[8]进行求 解*AX=XB*,得到转换矩阵*X*如下:

X =	-0.962 2	0.085 8	-0.010 6	457.91	
	0.072 3	0.944 6	0.044 8	-227.54	(12)
	0.033 0	0.025 1	-0.959 3	490.54	(12)
	0	0	0	1	

3 实验结果及分析

本文采用 QT 作为图形界面开发框架,结合 mysql 开 源数据库实现水表分拣软件系统的开发。

水表分拣操作界面(图 10)主要包含服务器连接模块,该部分主要用于和机械手进行通信设置;运动参数模

块主要是对机械手的运动参数进行设置;运动控制模块是 对机械手的运动轨迹进行设置;关节显示模块主要是为了 更好地实时监测关节值的变化。

图 10 分拣系统操作界面

为了评估手眼标定的误差大小,采用如下误差评判 准则:

		表 2 头	头验坐标对比表		単位:mm
编号	x_i	y_i	x_0	\mathcal{Y}_0	误差δ
1	596.494	59.635	595.808	59.613	0.686
2	524.479	10.136	523.915	10.956	0.994
3	556.510	49.134	556.930	49.894	0.868
4	575.993	33.652	575.124	33.432	0.895
5	535.384	100.618	536.426	100.906	1.002
96	653.307	-18.273	653.727	-18.855	0.718
97	622.310	8.240	622.989	7.558	0.961
98	694.117	35.966	693.286	35.643	0.891
99	615.195	5.671	615.914	5.966	0.776
100	672.809	38.256	673.117	37.194	1.106

实验结果表明:由表2可得到平均误差为0.874mm, 最大误差为1.106mm。可满足所设计的1.5mm 精度 要求。

4 结语

本文介绍了基于机器视觉引导的机械手分拣水表的 设计。为了确定水表在图像中的坐标,先利用颜色特征对 水表进行粗定位,在粗定位的基础上利用基于归一化梯度 内积相似性的模板匹配算法进行精确定位。该方法简单 易行,具有较好的定位结果。为了将水表的图像坐标转换 *****

到机器人坐标系,本文构建 Eye-to-Hand 标定模型,并且 利用改进的矩阵直积法进行求解,得到相机坐标系与机器 人基座坐标系转换关系矩阵 X 且对产生的误差进行量化 分析。进行 100 次的随机抓取实验,平均误差为 0.874 mm,最大误差为 1.106 mm,达到 1.5 mm 的设计精度 要求。

参考文献:

- [1] 赵彬. 基于机器视觉的工业机器人分拣技术研究[D]. 沈阳: 沈阳工业大学,2013.
- [2] 袁仁辉. 基于机械手的双目视觉定位抓取研究[D]. 秦皇岛: 燕山大学,2016.
- GAO Y, HENDRICKS L A, KUCHENBECKER K J, et al. Deep learning for tactile understanding from visual and haptic data[C]// 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden; IEEE, 2016; 536-543.
- [4] WANG H Z, DONG Y. An improved image segmentation

algorithm based on Otsu method [C]//SPIE Proceedings"," International Symposium on Photoelectronic Detection and Imaging 2007: Related Technologies and Applications. Beijing, China:SPIE,2007.

- [5] 孙浩楠,王勇,胡志平,等. 基于矩形拟合的 IC 芯片块定位算 法[J]. 机械制造与自动化,2020,49(6):201-202,209.
- [6] STEGER C. Similarity measures for occlusion, clutter, and illumination invariant object recognition [C]//Pattern Recognition, [S. I.:s. n.], 2001.
- ZHANG Z. A flexible new technique for camera calibration [J].
 IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(11):1330-1334.
- [8] 胡为,刘冲,傅莉,等.一种高精度的机器人手眼标定算 法[J].火力与指挥控制,2018,43(9):19-24.

收稿日期:2021-09-13

(上接第 183 页)

于是得

$$X_{0}(s) = G(s) U(s) = \frac{27.5\omega_{n}^{2}}{s(s^{2}+2\zeta\omega_{n}s+\omega_{n}^{2})}$$

将 ζ = 1 代入,系统在 u(t) = 27.5 信号的作用下的输 出的拉氏变换可展开成部分分式:

$$X_{0}(s) = \frac{27.5\omega_{n}^{2}}{s(s^{2}+2\omega_{n}s+\omega_{n}^{2})} = \frac{27.5\omega_{n}^{2}}{s(s+\omega_{n})^{2}} =$$

27.5 $\left[\frac{1}{s} - \frac{1}{s+\omega_{n}} - \frac{\omega_{n}}{(s+\omega_{n})^{2}}\right]$

将上式再进行拉氏反变换,得出二阶系统在临界阻尼 状态下的 *u*(*t*) = 27.5 响应为

 $x_0(t) = 27.5[1-e^{-\omega_n t}(1+\omega_n t)]$ (t≥0) 再将 $\omega_n = 2$ 代入可得质量块的位移

 $x_0(t) = 27.5 [1 - e^{-2t}(1 + 2t)] \quad (t \ge 0)$

可以看出质量块的位移随着时间的增长会逐渐收敛。 以上是动态响应结合几何结构参数所设计出的小型电控 越野机器人悬挂装置系统,其悬挂装置采用克里斯蒂悬挂 的机械结构。由车体上身载重质量 m = 3.5 kg,可得出所 需的弹簧刚度系数 $K = \omega_n^2 m = 14 \text{ N} \cdot \text{m}$,相应的黏性阻尼系 数 $B = 2\zeta \sqrt{Km} = 14 \text{ N} / (\text{m/s})$,即系统参数均已确定。要使 质量块(车体)的位移 $x_0(t)$ 快速到达稳态,则需要根据 m,ζ 和 ω_n 来取定K、B的系数大小,再结合几何结构的设 计,便可设计出较优的小型电控越野机器人悬挂装置系 统。综合上述理论模型,在几何结构与外界输入确定后, 对于悬挂弹簧处的参数选定,得到所需的弹簧刚度系数 $K = 14 \text{ N} \cdot \text{m}$,黏性阻尼系数 B = 14 N / (m/s),再根据这两 个参数去选型调试,达到了根据几何结构与外界输入为约 束条件来进行相应的悬挂弹簧系统装置的取定。

图 7 是小型电控越野机器人实物样机。

3 结语

本文在小型电控越野机器人悬挂系统设计中得出了

较为合理的方案,并进行了相关变量的分析,通过力学模型与非线性规划来求解几何结构参数的最优解,再结合动态响应仿真来求解悬挂系统的特性参数,选取临界阻尼进行参数调定,得到悬挂所需的弹簧刚度系数和黏性阻尼系数,实现了悬挂系统特性参数的优化选取。

图 7 小型电控越野机器人实物展示 (已拆除传感器及电路板)

参考文献:

- [1] 张钧. 基于麦克纳姆轮的智能机器人室内定位算法设计[J]. 科技创新与应用,2020(5):93-94.
- [2] 吴宗文,谭兵. 军用履带车辆转向机构发展综述[J]. 机械工 程师,2007(5):16-18.
- [3] 曹策俊,李从东. 基于数学规划的应急组织指派优化问题综述[J]. 系统仿真学报,2021,33(1):1-12.
- [4] 王迪,李璐明,程海涛,等. 基于 MATLAB/Simulink 的电动汽 车驱动电机能量回收控制策略研究[C].第十七届河南省汽 车工程科技学术研讨会论文集,郑州:河南省汽车工程学会, 2020:362-363.
- [5] 王积伟,吴振顺. 控制工程基础[M].2 版. 北京:高等教育出版社,2010.
- [6] 熊藜,宋刚,胡荣瀚,等. 二阶控制系统时间响应分析[J]. 汽 车实用技术,2019(12):96-98.

收稿日期:2021-09-30